Olympus Logo
Resources
Application Notes
Back to Resources

Crevice Corrosion - Testing the Sealing Surface of Flanges


Crevice Corrosion Testing the Sealing Surface of Flanges

Crevice corrosion is a known damage mechanism. In crevice corrosion, a concentration of corrosive materials or a combination of substances form a corrosive solution located at a specific point, accelerating damage. One example is the corrosion that can occur between seals on two opposing flanges with a gasket placed in-between the seals.

Corrosive materials collect within a crevice, such as between sealing surfaces and gasket material. Because the concentration of the corrosive material is in a localized area, the rate of corrosion is accelerated. Corrosion or loss of sealing area can cause loss of containment, leading to a potentially catastrophic release with loss of assets, production, and even injury to personnel.

Testing the sealing surface of flanges has become standard practice. Testing is performed in situ as part of a run and maintain program. Testing is also common as a pre-turnaround exercise to determine which flanges need to be repaired.

Machining the flange face in the field is performed as an in-situ repair. Ultrasonic testing can be used to determine if the flange face has been machined and if loss of sealing area has occurred. If there is no more seal to repair, the flange must be replaced, or the seal area must be renewed using a weld build-up technique.

A cross-sectional view of a raised face flange.
A cross-sectional view of a raised face flange.

Caution: If the flange face has been repaired by welding and machining, then ultrasonic testing (UT) inspection might detect this weld as an interface. As the interface is detected, this signal can be misinterpreted as loss of sealing area.

Phased Array Application

The two most common positions for placing the UT transducers are on the flange taper and between the bolt holes, as illustrated in the photographs below.

The taper areas of flanges are not always the same, so the geometry must be plotted for each flange. This step is difficult and can lead to error in condition assessment.

The phased array transducer is placed on the angled section of the flange.
The phased array transducer is placed on the angled section of the flange.
The phased array transducer is placed between the bolts.
The phased array transducer is placed between the bolts.

Raised Face Flange Photos

The photos below show an example of raised face flanges as applicable to piping.

The phased array transducer can be placed on the angled section of the flange.
The phased array transducer can be placed on the angled section of the flange.
The phased array transducer can be placed between the bolt holes.
The phased array transducer can be placed between the bolt holes.

BeamTool Software from Eclipse Scientific

Using BeamTool software can help make it easier to set up phased array techniques.

Phased array applied with the transducer on the flange taper.
Phased array applied with the transducer on the flange taper.
Phased array applied with the transducer on the flange taper.

Phased array applied with the transducer between the bolt holes.
Phased array applied with the transducer between the bolt holes.
Phased array applied with the transducer on the flange taper.

Industry Applications

The primary focus of this application is manufacturers and/or users of hydrofluoric acid (HF). HF units are common in refineries and chemical plants. Other types of processes can attack the flange seal, including acids, steam, and salt water.

Calibration Standard

A calibration standard should be used to confirm the phased array setup. Using a duplicate of the flange (same size and weight) with targets manufactured in the raised face sealing area for UT performance demonstration is the ultimate confirmation of setup performance.

Example of a calibration standard.

A = 0.075 in. deep × 1.0 in. long
B = 0.050 in. deep × 1.0 in. long
C = 0.025 in. deep × 1.0 in. long

Example of a calibration standard.

Applicable Olympus Products

Examination of raised face flanges can be performed using the EPOCH® 1000, OmniScan® MXU-M, OmniScan SX, OmniScan MX2, or OmniScan MX flaw detectors.

Small Olympus phased array probes are well-suited for flanges with smaller distances between the bolts and nuts.

Advantages

  • Condition assessment of the sealing area without separating the flanges
  • Cost savings to the owner/operator
  • Increased safety due to the reduced potential for exposure to hazardous chemicals when separating the flanges
  • Inspection can be performed while the equipment is online
  • Planning for repair before TAR commences
Olympus IMS

Products used for this application


OmniScan SX

The single group, lightweight OmniScan SX features an easy-to-read 8.4 inch (21.3 cm) touch screen and provides cost-effective solutions. The OmniScan SX comes in two models: the SX PA and SX UT. The SX PA is a 16:64PR unit, which, like the UT-only SX UT, is equipped with a conventional UT channel for P/E, P-C or TOFD inspections.

OmniScan MX2

The OmniScan MX2 now features a new phased array module (PA2) with a UT channel, and a new two-channel conventional ultrasound module (UT2) that can be used for TOFD (Time-of-Flight Diffraction), as well as new software programs that expand the capabilities of the successful OmniScan MX2 platform.

EPOCH 1000 Series

The EPOCH 1000 is an advanced conventional ultrasonic flaw detector that can be upgraded with phased array imaging at an authorized Olympus service center. Key features include: EN12668-1 compliant, 37 digital receiver filter selections, and 6 kHz pulse repetition rate for high speed scanning.
Sorry, this page is not available in your country

Let us know what you're looking for by filling out the form below.

This site uses cookies to enhance performance, analyze traffic, and for ads measurement purposes. If you do not change your web settings, cookies will continue to be used on this website. To learn more about how we use cookies on this website, and how you can restrict our use of cookies, please review our Cookie Policy.

OK