Evident LogoOlympus Logo
자료실
Application Notes
자료로 돌아가기

방사선 촬영을 대체하는 위상 배열 초음파


An example of carbon steel pipe corrosion that can be mapped using a scanner

Summary

In nondestructive evaluation (NDE), or nondestructive testing (NDT), many codes allow inspectors to substitute one inspection method with another, as long as certain requirements are met. Additionally, non-code-based inspection methods are constantly being reviewed to improve processes and reduce costs. Ultrasonic methods have become a popular and accepted substitute in inspections that previously employed radiographic methods.

Introduction

Radiography and ultrasound are complimentary NDT techniques. Both can volumetrically inspect welds and components for defects like cracks, lack of fusion, porosity, etc. The choice of one over the other often depends on external process decisions or small differences in the detection capability for a particular test. However, ultrasound has gained momentum as a replacement for radiography both in practice and in the codes of major organizations such as ASME (American Society of Mechanical Engineers) and API (American Petroleum Institute). Although most codes do not specify the ultrasonic method, phased array (PA) ultrasound, in particular, has become the most popular replacement method in inspection processes. PA is often also combined with time-of-flight diffraction (TOFD) when inspectors use acquisition units and scanners that can accommodate both methods simultaneously. In the past, code-based inspection processes typically followed code cases or appendixes. However, after increasing use and acceptance in industry, ultrasonic inspection processes are being added directly to the main body of major codes, for example, ASME Sec. V. Art. 4 from 2010 onwards. Phased array ultrasonic equipment is becoming more portable, affordable, and easier to use, making ultrasound a practical, safe replacement for radiography.

Typical Advantages of Ultrasound (over Radiography):

  • High probability of detection (POD), especially for cracks and lack of fusion:
    • Ultrasound tends to detect planar flaws better than radiography in most studies.
  • Accurate sizing of defect height and fewer rejects or repair using Engineering Critical Assessment:
    • Ultrasound permits defect height measurement, which enables volumetric consideration of flaw severity (instead of only flaw type and length).
  • Does not emit radiation, does not cause hazards, and does not require additional licensing or personnel.
  • Does not require screened-off areas. Work in proximity to ultrasonic testing can continue uninterrupted.
  • Does not generate any chemical or waste material (as opposed to film-based radiography, which does).
  • Real-time ultrasonic analysis of welds can provide instant evaluation and feedback to a welder.
  • Setup and inspection reports are in electronic format (as opposed to film format in radiography).

Examples of Codes with Ultrasound Replacing Radiography

  • ASME Code Case 2235
  • ASME Code Case 179
  • ASME Code Case 168
  • ASME Code Case N-659
  • ASME Code N-713
  • API 620/650 App. U
  • ASME Sec. V Mandatory Appendixes

Typical Ultrasonic Equipment and Inspection Requirements

  • An acquisition unit with full, raw A-scan data retention and position-encoding ability (for example, an OmniScan® flaw detector or FOCUS PX instrument).
  • A scan plan and procedure that documents the inspection strategy and essential parameters (for example, parameters that are set up using the NDT SetupBuilder software).
  • An industrial scanner (with position encoder) that can repeatedly scan a weld or component (semiautomatically or automatically):
    • The choice of scanner model is based on the number of welds, pipe diameter, and other application variables.
  • Deliverable data:
  • Demonstrated performance of equipment, procedure, operator, and inspection process.
  • Alternative acceptance criteria, as required.
  • Probes, wedges, couplant delivery equipment, and other accessories.
  • Proper training and certification of personnel.

An example of carbon steel pipe corrosion that can be mapped using a scanner
The OmniScan MX2 (multi-group capable) [left] and OmniScan SX (single group) flaw detectors.

Using the RollerFORM scanner to inspect flat bottom holesAmplitude C-scan using the OmniScan flaw detector


Fully automatic WeldROVER scanner (left) and semiautomatic HSMT-Compact scanner with an OmniScan MX flaw detector.

Conclusion

The replacement of radiography with ultrasound has become an industry trend, as well as a code-accepted practice. Easy-to-use and affordable portable phased array equipment and associated software are accelerating the use of ultrasound. The main reasons for this continuing trend include savings in process cost and time, improved safety of operators and others in surrounding areas, and the use of alternative acceptance criteria. The increased use of ultrasound has led to a decrease in part rejection and repairs.

Olympus IMS

이 애플리케이션에 사용되는 제품
NDT SetupBuilder는 검사 설정을 생성하고 빔 시뮬레이션을 시각화할 수 있는 새로운 PC 기반 소프트웨어입니다. 이 소프트웨어는 옴니스캔 MX2에서 직접 가져올 수 있는 쉽고 빠르며 포괄적인 검사 전략을 구체화하기 위한 다양한 기능을 제공합니다.
검사하는 표면에 따라 프로브를 정확하게 배치하는 능력은 검사 품질에 큰 영향을 미칩니다. Olympus는 검사관의 작업을 지원하고자 다양한 산업용 스캐너와 부속품을 제공합니다. 스캐너는 수동 또는 전동 구동이 가능한 하나 또는 두 개의 인코딩된 축을 포함한 다양한 구성으로 제공됩니다.
TomoView는 초음파 신호의 설계, 데이터 수집, 시각화 및 분석에 사용되는 강력하고 유연한 PC 기반 소프트웨어입니다.
이 새로운 소프트웨어는 옴니스캔 데이터 분석을 위한 가장 효율적이고 저렴한 선택으로, 옴니스캔 온보드 소프트웨어에 제공되는 것과 동일한 분석 도구를 갖추고 있으며, 개인용 컴퓨터에서 실행할 수 있는 유연성이 더해졌습니다.
단일 그룹인 경량 옴니스캔 SX는 읽기 쉬운 8.4인치(21.3cm) 터치 스크린을 갖추고 있으며, 비용 효율적인 솔루션을 제공합니다. 옴니스캔 SX는 SX PA와 SX UT의 두 가지 모델로 제공됩니다. SX PA는 UT 전용 SX UT와 마찬가지로 P/E, P-C 또는 TOFD 검사를 위한 재래식 UT 채널을 장착한 16:64PR 장치입니다.
위상 배열 응용 분야별 프로브의 범위는 0.5MHz에서 18MHz이며, 16, 32, 64 또는 128개의 소자가 있을 수 있습니다. 특수 프로브는 최대 수백 개의 소자를 가지고 있을 수 있습니다.
죄송합니다. 이 페이지는 해당 국가에서 사용할 수 없습니다.
아래 양식을 작성하여 원하는 내용을 알려주십시오.
죄송합니다. 이 페이지는 해당 국가에서 사용할 수 없습니다.