Ressources
Notes d’application
Retour aux ressources

Fastener Hole Crack Detection Using Adjustable Slide Probes



Eddy Current Sliding Probes

General

The guidelines for the adjustable sliding probes are similar to the fixed types, therefore much of the information that is given here follows the same sequence and detail and will look like repetition. This is done so that both technical bulletins are self contained and may be read independently, but is best to become familiar with the fixed probes first.

Sliding probes have been named as such because they move over fasteners in the inspection area in a sliding motion. Conventionally, probes are used in "spot probing" such as with a ring-encircling probe or moving a spot/surface probe around the periphery of a fastener.

Sliding probes are eddy current probes operating in the reflection mode (transmit-receive). This means that the eddy currents are induced by the driver coil (transmitter) and detected by a separate pick up coil (receiver). With adjustable types, a spacer is inserted between the two coil bodies.

Sliding probes are the fastest method to inspect large numbers of fastener holes for cracks. They are capable of detecting small defects in both the surface and subsurface layers. Adjustable sliding probes are particularly well suited for finding subsurface cracks in thick multilayer structures, like wing skins. They differ with the fixed types in that they are most often moved at right angles to the crack direction (although the probe is turned 90 degrees) in what is called a 90 degree scan (see the Appendix).
The sensitive area is located in the center of the probe between the coils and is directionally sensitive, so the engraved (normally green) "detection" line must be kept in the direction of the expected cracks. Two types of scan are possible: one scan centralized over the heads or two side (tangential) scans, one in each side of fastener.

Surface and Subsurface Crack Detection

Adjustable sliding probes are normally used for subsurface crack detection and rarely for surface cracks where the fixed sliding probes will normally have an advantage. Nevertheless there are some exceptions such as in the case of large or magnetic fasteners and/or if the crack growth direction is at 90 degrees to the fastener row. The penetration will increase with the larger size probes and depths of 0.75 in. (20 mm) have been possible, although the small sizes are the most common and can also be used down to 100 Hz.

Liftoff Adjustment

When the probe is passed over the fastener head an indication will be obtained similar to that of Figure 1. This is very similar to the fixed types. The liftoff is normally adjusted to be horizontal as it is the conventional direction. As the signal is not a straight line but a curve, it is important to remember that we only need a reasonable compensation for the expected lift off variations caused by paint and fastener head unevenness. A horizontal movement of the dot for the first 0.01 in. (0.25 mm) to 0.02 in. (0.5 mm) of lift off is satisfactory. In Figure 1 it is the movement from the null point "X" to point "Y", which will only cause a mainly horizontal shift of the display along that distance.

Figure 1 it is the movement from the null point "X" to point "Y"

Figure 1

Even this small distance can be a steep curve and may have to be allowed to move slightly upwards before moving downwards (see Figure 2). The amount of vertical movement for the required lift off is distributed so that the display only shifts slightly above or below horizontal.

Figure 2

Probe Adjustment


The spacer thickness between the coils is normally adjusted for the best detection. If the notch used for calibration is long enough (to give a good indication) it is quicker to centralize it over the head and perform one scan only (typical spacer thickness for the single scan inspection is approximately the fastener diameter). Check that the notch is still detectable if the probe is turned 180 degrees. This type of scan may not be possible with some large head or magnetic fasteners.

For tangential scans a thinner spacer is often better, but the final decision depends on the experimental results obtained with the reference standard and the structure to be inspected. The spacer thickness range can vary from 0 (no spacer) for inspections close to the surface and small fastener heads to a maximum of about 0.3 in. (8 mm) for deep penetration on large heads with bigger probe types. A wider spacer will give more tolerance to probe deviation as the sensitive area becomes wider, but the instrument will require more gain.

Signal Interpretation


When the probe moves over a fastener hole with no cracks in the normal 90 degree scan, the indication is narrow, but if we scan at 0 degrees the indication becomes a loop. See Figure 3 and Appendix: (Scan Directions to Insure All Cracks are Evaluated). The loop is produced by a continuous phase change as the driver and pick up coils travel over the fastener and is wider than with the fixed probes. When the dot is at point "a" the probe is totally centralized (common to both scanning directions).

Scan Directions to Insure All Cracks are Evaluated)

Figure 3

Crack Detection

When the probe moves over a fastener hole with a crack the indication changes and typically will create a larger loop and vertical movement (see Figure 4).

crack detection

Figure 4

The main difference between scanning in the crack direction or at right angle to the crack is the shape of the indication. The dotted line shows the indication obtained when the probe travels over the length of the crack (0° scan), where the solid line shows the indication from traveling at right angles to the crack (the normal 90° scan). The reason is when the crack is scanned "slowly" along its length, the phase changes, displaying a loop - but when moving at right angles to the crack, it is seen by the probe "abruptly", and gives a sharp narrow signal. This signal will meet the loop at some point in its travel depending on the probe alignment. Both these signals can be observed by scanning the same fastener hole in the two directions. See Appendix: (Scan Directions to Insure All Cracks are Evaluated).

If two cracks in opposite sides of the fastener hole are present with the probe moving at right angles and centralized over the fastener the indications will typically add up to a larger indication. This is because both are being detected at the same time (with a fixed probe they would normally be detected one after the other in a 0° scan).

Variables: Probe Scan Deviation

It is important to try to keep the probe centralized over the fastener heads. This corresponds to a maximum indication for the fastener and also the crack. In Figure 5 the indication "a" corresponds to a perfectly centralized probe, while indications "b" and "c" correspond to increasing deviation from the center line. The dotted line marks the path of the changing deviation (See Appendix).

indication "a" corresponds to a perfectly centralized probe, while indications "b" and "c"

Figure 5

If the probe deviates from the center line, the crack indication will move along the loop that we saw in Figure 4 and is now presented in Figure 5. The crack indication is at "a" when the probe is centralized and moves towards "b" as it deviates in one direction or "c" as it deviates in the opposite direction. Point "b" gives an improved indication even if it loses a small amount of amplitude it has gained in phase, giving a better separation angle (this is because we deviated to the side where the crack is located). This is the reason why two tangential side scans are more sensitive to smaller cracks than one centralized scan. When the probe deviates in the opposite direction the signal from the crack moves towards point "c", where it loses too much phase and amplitude and starts looking more like the normal fastener indication (particularly for a small size defect that the one represented in Figure 5). This is why a second tangential scan in the opposite side is needed.

Other Variables: Crack Angle Deviation

A reduction in the crack indication occurs when the crack is at an angle to the probe scan direction. This happens if the crack is not completely at 90 degrees to the normal probe scan or changes direction as it grows. The effect is also very similar if the probe is not at right angles but at a smaller angle of attack. See Appendix: (Scan with a Deviation Angle).

The adjustable sliding probes are capable of detecting cracks up to about 30 degrees off angle, and will give a reduced indication proportional to the amount of deviation, see Figure 6. The effect is similar to that obtained with the fixed sliding probes.

adjustable sliding probes are capable of detecting cracks up to about 30 degrees off angle

Figure 6

Other Variables: Electrical Contact

When inspecting fasteners that have just been installed or reference standards that have intimate contact with the aluminum skin plate, it is not unusual to obtain a smaller than normal indication. In some extreme cases the fastener indication may disappear almost completely. This is due to the good electrical contact between the fastener and the skin that allows the eddy currents to circulate without finding the boundary and therefore no obstacle or barrier. Figure 7 shows the decrease of the fastener indication due to close contact.

This problem is found more frequently with riveting and rarely with other fasteners, particularly if used with nuts or collars. Nevertheless, because of this effect it is recommended to paint the holes on the reference standard before fastener installation. In this way the reference standard will simulate the real life structure that due to the temperature changes, moisture and movement that always creates a natural oxide layer between fastener and skin.

Notes:

  • Cracks are considered detectable up to +/- 30 degrees, but it also depends on depth and crack length. Longer cracks are more likely to be detected off angle.
  • It is important to avoid the probe hitting the edge of the fastener head. If the spacer does not provide enough gap to allow clearance over the fastener heads it is advisable to create one using thin strips (skis) of tape.
  • To provide the best presentation it is usual to set the vertical gain a few dB above the horizontal gain.
  • It is often helpful to use a non metallic straight edge to guide the probe over the line of fasteners, particularly if heavy paint makes it difficult to see the heads. In extreme cases, it may be necessary to locate two fasteners to locate the row using the sliding probe.
  • If the fastener heads are not reasonably aligned, it is probably best to scan by hand, taking care to guide the probe along with the same alignment to the fastener head.
  • To find a crack direction more accurately, approach the fastener at different angles until you obtain the largest indication.
  • When inspecting magnetic steel fasteners it is often helpful to place a very thin magnetic steel shim under the driver coil. As the probe will see the steel shim all the time, the dot will move less when traveling from aluminum to the magnetic fastener head and will produce a smaller indication.
  • If the fastener spacing is close enough to allow a head to be under each coil, a downwards indication will be obtained but is normally easily identified from a crack.

Appendix

Typical Center Scan with an Adjustable Probe

Typical Center Scan with an Adjustable Probe

Typical Side Scan (Tangential) with an Adjustable Probe (two scans normally required)

Typical Side Scan (Tangential) with an Adjustable Probe (two scans normally required)

Scan Directions to Insure All Cracks are Evaluated

Scan Directions to Insure All Cracks are Evaluated

Scan with a Deviation Angle

Scan with a Deviation Angle

Olympus IMS
Produits utilisés pour cette application

Les sondes de surface de type crayon sont munies d’une pointe en plastique et servent aux applications générales de détection des fissures de surface ou près de la surface. Elles sont offertes dans une variété de configuration de bobines et d’options de connecteurs. Les sondes de surface de type crayon sont munies d’un collet de réglage offrant une excellente stabilité.
Les sondes de surface en acier inoxydable à tige courbée servent aux applications générales de détection des fissures de surface ou près de la surface. Elles sont offertes dans une variété de longueurs, de configurations de bobines et proposent diverses options de connecteurs.
La tige en cuivre flexible de ces sondes peut être courbée de diverses manières. Conçues pour la détection générale des fissures de surface, ces sondes flexibles sont offertes dans une variété de longueurs, de configurations de bobines et de chutes, et proposent diverses options de connecteurs.
Une gamme de sondes spécialisées incluant les sondes de type crayon 3551l, les sondes pour l’inspection des aubes à turbine, les sondes à pointe de plastique, les sondes digitales, et les sondes à ressort.
Les sondes en acier inoxydable montées sur scanner rotatif comprennent un éventail de sondes faites entièrement d’acier inoxydable, y compris celles des séries standard et SEU.
Les sondes annulaires sont conçues pour s’adapter à divers diamètres de têtes de fixation. Elles servent principalement à détecter des fissures sous la surface lorsque les fixations restent en place. Elles peuvent être configurées en mode pont ou réflexion.
Les autres sondes montées sur scanner rotatif comprennent une variété de sondes pour scanner spécialisées, y compris les sondes réglables de type X, les sondes réglables de type Y, les sondes pour l’inspection de fraisures et les sondes en acier inoxydable pour l’inspection de fraisures.
Pointe à 30° ou à 45°, tige en acier inoxydable. Conçues pour la détection générale des fissures de surface, ces sondes sont offertes dans une variété de longueurs, de configurations de bobines et de chutes, et proposent diverses options de connecteurs.
Tige droite en acier inoxydable. Conçues pour la détection générale des fissures de surface, ces sondes sont offertes dans une variété de longueurs, de configurations de bobines et proposent diverses options de connecteurs.
Les sondes ponctuelles sont utilisées pour la recherche de défauts tant au-dessus qu’au-dessous de la surface. Le grand diamètre des bobines et leur fonctionnement en basse fréquence sont très pratiques pour le balayage de grandes zones. Aussi, le grand diamètre des bobines permet de détecter des indications plus grandes, car la taille limite de détection est généralement égale à la moitié du diamètre de la sonde.
Les bobines des sondes pour l’inspection manuelle des trous de boulons sont placées à angle droit dans le sens de la tige. Ces sondes sont tournées à la main pour inspecter les trous de boulons dont les fixations ont été retirées. Elles sont disponibles en diamètres standard (fractionnaires et métriques) ou personnalisés, équipées de bobines absolues ou différentielles.
Les sondes à pointe de plastique montées sur scanner rotatif proposent une variété de sondes télescopiques ou munies d’une coquille en acier inoxydable, y compris celles des séries SUB, SPO-5965, SPO-3564 et standard.
Les sondes à courant de Foucault comprennent les sondes Nortec et NDT Engineering. Nous offrons plus de 10 000 sondes à courant de Foucault standard et personnalisée, blocs étalons et accessoires.
Les sondes pour l’inspection des soudures sont conçues pour inspecter les soudures des métaux ferreux. Elles constituent une option économique à la magnétoscopie qui requiert le nettoyage de la pièce avant l’inspection.
Pointe à 90°, tige en acier inoxydable Conçues pour la détection générale des fissures de surface, ces sondes sont offertes dans une variété de longueurs, de configurations de bobines et de chutes, et proposent diverses options de connecteurs.
Les sondes de conductivité sont conçues pour le tri des métaux non-ferreux afin de déterminer l’état des matériaux après un traitement thermique.
Les sondes coulissantes sont conçues pour inspecter les lignes de fixations. Elles fonctionnent en mode réflexion et sont utilisées pour la recherche de défauts sur la surface ou près de la surface. Elles peuvent être réglables et s’adapter aux fixations de différentes tailles, ou fixes et servir à des procédures spécifiques.
Le nouvel appareil NORTEC 600 fusionne les dernières avancées en matière de recherche de défauts par courants de Foucault à haute performance dans un appareil compact et durable. Grâce à son écran VGA lumineux en couleurs de 5,7 pouces et son mode plein écran, le NORTEC 600 permet d’afficher des signaux à courants de Foucault sélectionnables à haut contraste.
Sorry, this page is not available in your country
Let us know what you're looking for by filling out the form below.

Ce site utilise des témoins de connexion pour augmenter la performance, mesurer le nombre de visiteurs et vérifier la pertinence des publicités. À moins de modifier les paramètres de votre navigateur, ces témoins continueront d’être utilisés pour ce site. Pour en savoir plus sur la façon dont nous les utilisons et sur la façon d’en restreindre l’usage, veuillez consulter notre politique sur les témoins de connexion.

OK