Evident LogoOlympus Logo
자료실
Application Notes
자료로 돌아가기

고무 타이어의 두께 측정


Application

Measuring the depth of steel and fiber ply cords or belting in all types of rubber tires and, in many cases, total wall thickness as well.

Background

For quality control purposes, manufacturers of rubber tires need to know the position of the steel or fiber ply cords that are embedded in the walls of automobile, truck, and off-road vehicle tires. This is particularly important in the case of the large, expensive tires used for heavy trucks and construction equipment, where improper cord positioning can lead to costly failures. In some cases, manufacturers also want to measure total wall thickness. Because rubber is very attenuating to high-frequency sound waves, and because of the complex pattern of echoes that are generated by the internal structure of most tires, these measurements require special consideration.

Equipment

There are two common approaches to rubber tire measurement, depending on the thickness of the tires to be measured. Olympus recommends the following instruments for specific applications:

Model 38DL PLUS® or 45MG thickness gages with the single element software, used with an Olympus M1036 (2.25 MHz) transducer. These gages are used mostly for automobile and light truck tires, and—along with a low-frequency transducer—are generally used to measure the depth of ply cords only. The measurement range is approximately 3 mm (0.125 in.) to 25 mm (1.0 in.), with a calibrated accuracy of ± 0.25 mm (0.010 in.) or better. The waveform display, which is standard on the 38DL PLUS and optional on the 45MG gage, is useful for verifying detection of the first ply cord echo that represents the minimum rubber thickness.

EPOCH® series flaw detectors with a square wave pulser such as the EPOCH 6LT or EPOCH 650 instruments, used with selected low-frequency transducers. These square wave flaw detectors with selectable bandpass filtering offer much greater penetration than a thickness gage and are recommended for larger tires, such as those for trucks and off-road vehicles. Rubber thicknesses of 200 mm (8 in.) or more can usually be measured with 500 kHz transducers, sometimes in pairs in pitch-catch mode. Typical measurement accuracy ranges from ± 0.25 mm (0.010 in.) or better on passenger car tires to ± 1 mm (0.040 in.) on very large truck and off-road vehicle tires.

Procedure for use

Sound attenuation and internal structure vary widely between various types of tires, so it is important to evaluate each application individually. The measurement of rubber always requires low-frequency transducers of 2.25 MHz or lower. In some cases, it is advantageous to use a transducer with an epoxy wear surface to improve sound coupling between the transducer and the rubber. The most commonly recommended transducers for tire testing are the Olympus M1036 (2.25 MHz, 12.5 mm [0.5 in.] diameter, high penetration) and the V601-RB (500 kHz, 25 mm [1 in.] diameter).

In applications involving very thick tires (greater than 4 in. or 100 mm of rubber), pairs of V601-RB transducers have been successfully used in pitch-catch mode with a flaw detector. Separating the transmitter and receiver functions allows the use of very high receiver gain without the potential noise problems associated with amplifying the excitation pulse recovery. Gel couplant is normally recommended for all rubber tire applications. To help ensure good wetting, the couplant must be worked into the surface. As with any ultrasonic thickness measurement, it is necessary to calibrate the sound velocity of the rubber in question using a sample of known thickness. The velocity of rubber changes rapidly with temperature, so for best accuracy, the sound velocity must be measured at a temperature that closely corresponds to actual measurement conditions.

Successful ultrasonic measurement of total tire thickness—as opposed to the depth of the ply cords—depends on the structure of the ply cords. In some types of tires where there are many layers of ply cords and/or the ply cords are very close together, not enough sound energy will reach the inside wall to permit measurement of the total thickness. In other tires where there is more separation between the individual ply cords, some sound energy will get through to the inside wall and measurement of total thickness will be possible. This must be evaluated on a case-by-case basis. In cases where an inside wall echo is visible, the instrument can be switched to a second stored setup that can be used to make the measurement.

Figure 1 shows the echo from steel ply cords, measured from the outside tread, in an automobile tire whose tread is approximately 12.5 mm (0.5 in.) thick. It is measured here with the model 38DL PLUS gage and an M1036 transducer (2.25 MHz). In this case, the echo is measured to the first positive lobe.


Figure 1


Figure 2 shows the total wall thickness measurement of a large construction vehicle tire with a thickness of approximately 171.5 mm (6.75 in.), using an EPOCH 650 flaw detector in through-transmission mode with two 500 kHz V601-RB transducers. The measurement gate has been positioned to capture the rubber thickness, which is represented by the peak near the right side of the display.

Figure 2

Olympus IMS

이 애플리케이션에 사용되는 제품

72DL PLUS™ 고급 초음파 두께 측정기는 사용이 간편한 휴대용 장치로 빠르고 정밀하게 두께를 측정합니다.최대 125MHz의 단일 요소 탐촉자와 호환되는 이 혁신적인 두께 측정 도구는 다층 도장, 코팅, 플라스틱과 같은 초박막 소재의 두께의 측정에 매우 적합합니다.최대 6층의 두께를 동시에 표시할 수 있습니다.

EPOCH 6LT 휴대용 초음파 결함 탐상기는 한 손 작업에 최적화되어 있으며 로프 접근 및 고소 작업이 필요한 고휴대성 응용 분야에서 탁월한 성능을 제공합니다. 가볍고 인체 공학적 디자인으로 사용자의 손에 단단히 고정시키나 로프 접근이 필요한 응용 분야에서는 다리에 묶을 수 있습니다.
EPOCH 650은 다양한 응용 분야에 대한 우수한 검사 성능과 유용성을 갖춘 재래식 초음파 결함 검출기입니다. 이 직관적이고 견고한 장비는 인기 있는 EPOCH 600 결함 탐상기 후속작이며 추가 기능을 갖추고 있습니다.
45MG 고급 초음파 두께 측정기에는 표준 측정 기능은 물론 다양한 소프트웨어 옵션이 있습니다.이 독특한 두께 측정 도구는 당사의 이중 요소 및 단일 요소 두께 측정 탐촉자와 호환됩니다.

다용도로 활용 가능한 38DL PLUS™ 측정기를 이중 요소 탐촉자와 함께 사용하면 부식된 파이프의 두께를 측정할 수 있으며, 단일 요소 탐촉자를 사용하면 박층 또는 다층 소재의 두께를 매우 정확하게 측정할 수 있습니다.

죄송합니다. 이 페이지는 해당 국가에서 사용할 수 없습니다.
아래 양식을 작성하여 원하는 내용을 알려주십시오.
죄송합니다. 이 페이지는 해당 국가에서 사용할 수 없습니다.